
White Paper | SEEBURGER BIS API Capabilities

API Security – A Brief Introduction

2

Table of Contents

APIs Today and Tomorrow .. 3

The Effect of Bad API Security Implementation ... 4

What Can Happen When APIs Are Not Secure .. 5

Protecting Your Data: Mechanisms and Technology .. 6
Auth (n/z) ... 6

OAuth2.0 .. 6

JSON Web Token ... 7

The Central Point for API Security Implementation: The API Gateway 8

The SEEBURGER BIS Platform’s API Gateway .. 9

Policy Architecture ..10
Rate-limit-by-key ... 10

Validate-jwt .. 11

Today’s API Security Risks ...12

3

APIs Today and Tomorrow

Cybersecurity Threats: Organizations face difficulties as
a result of the constantly changing cybersecurity threat
landscape. Sophisticated methods for exploiting API
vulnerabilities are constantly being developed by malicious
actors, so businesses need to stay ahead of the game by
putting strong security measures in place.

Regulatory Compliance: Stricter controls over the
processing and transfer of sensitive data are required by
the emergence of data protection laws like GDPR, HIPAA,
and others. Organizations must protect API security in order
to comply with these regulations and stay out of trouble
financially and legally.

Business Continuity: Because APIs are essential to the
operation of business processes and functions, any security
breach can cause operations to be disrupted, resulting in
lost time, money, and possibly even a tarnished reputation
among customers.

Organizations invest in best practices and API security
solutions, such as encryption, access controls,
authentication methods, and recurring security audits,
to address these issues. In a world that is becoming
more connected and data-driven, proactive API security
measures not only defend against possible threats but also
strengthen the digital infrastructure‘s overall resilience.

What is API Security,
and why has it become so important?
API security, is the term used to describe the procedures
and policies put in place to protect APIs from cyberattacks,
illegal access, and data breaches. APIs enable smooth
communication between applications by facilitating data
interchange and interaction between various software
systems. Since APIs are now widely used in contemporary
digital ecosystems, it is critical to ensure their security.

API security is becoming increasingly
important for a number of reasons, including:
Rapid Adoption of APIs: APIs are being used by industries
at a rapid pace, which has expanded the attack surface for
possible threats. It is becoming more and more important
to secure these interfaces as more apps depend on them to
exchange functionality and data.

Data Sensitivity: APIs handle a lot of sensitive data, such
as financial, user, and business-critical data. Unauthorized
access to sensitive data may result in serious repercussions,
including invasions of privacy, monetary losses, and
reputational harm to a business.

Based on a comprehensive analysis of the market and insights from many industry analysts, predictions suggest that APIs
will remain the most common attack vector for businesses and their data. The increasing use of APIs highlights how urgent
it is for businesses to give strong security measures top priority, especially when it comes to API security, in order to protect
their systems and confidential data from potential attacks. Proactive measures are essential to strengthen defenses and
reduce the risks connected with unauthorized access and cyber attacks as the API landscape keeps growing.

4

When creating the user account, which can be done either
via the mobile app or the website, basic information must
be entered. This includes bank account information, debit
cards, credit card information, a username, phone numbers
and/or email. The recipient can then be found via these data.

Venmo uses a public API. Unless it is changed in the default
settings, all transactions between two persons are public
for all to see. The transaction contains first and last name,
profile photo, a corresponding message, and the Facebook
ID, the transaction date as well as the status of the
transaction could be accessed. Security researcher Hang
Do Thi Duc used this opportunity in 2018 and evaluated
all data records from 2017. The API provided a wide range

of information. By analyzing and evaluating this data, it
was possible to create detailed profiles about individuals,
including potential health conditions.

She was able to do this because the public API provides
private information and was not securely configured, and
data filters, authentication and authorization mechanisms
for the retrieval of data were not available. There were
also other serious security mistakes which can be found in
OWASP API Security Top 10 – “massive data exposure and no
security by design.”

Venmo’s public API is one of the best-known cases in the field of API security and what can be done with collected data.
Venmo is a mobile payment service owned by PayPal. With the help of the mobile app, after creating a user account, money
transfers can be made to other users. When the company started, the focus was on the exchange of money between friends
who shared bills, such as when they went to the cinema together, or had dinner together. To use Venmo, you must create
an account, and both the sender and receiver must live in the U.S.

The Effect of Bad API Security Implementation

5

What Can Happen When APIs Are Not Secure

1,731,783
Facebook IDs

207,984,218
Transactions

18,429,464
Humans

Most frequent
last names

Busiest weekend
December 1-3, 2017

2,342,411 transactions

2,979,616
transactions

for pizza

2 1 3

Johnson
Smith

Lee

https://publicbydefault.fyi/

Profiles

YOLOist
• Female with a Greek name
• Friends live in Texas and Mexico City
• 865 transactions for soda, alcohol, fast food

and sweets in 8 months
• Uses 1-2 words or an emoji to describe things
• Follows routines

The All Americans
• Couple
• Own a car and a dog
• Favorite pizza is Shakey’s
• Live in Orange County, CA
• Brand name shoppers
• Visit theaters
• Favorite grocery store is Walmart
• Goes shopping more than once a week,

but never on Wednesdays or Sundays

Imagine if this was your critical business data.
The graphic below features the information Hang Do Thi Duc was able to access because of the insecure API used by Venmo.

https://publicbydefault.fyi/

6

Protecting Your Data: Mechanisms and Technology

Auth (n/z)

Auth (n/z) stands for authentication and authorization.
Authentication and authorization are broad terms using
multiple approaches to secure, identify and enforce rights
management. Authentication deals with the identity of the
user. For authentication mechanisms are implemented
which answer two questions: Is this the person who he/she
claims to be, and who is the person? Authorization, on the
other hand, is used to answer the question, what is this
person allowed to do? For example, it decides what data
the requesting instance is allowed to see.

As a practical example, take a journey by train or a flight.
During check-in, the identity card is shown, which authen-
ticates the person, as it clearly shows who the person is.
The plane or train ticket represents the authorization token.
It indicates what the person is allowed to do. In this case,
it shows which flight they are on and where the person
may sit. Within APIs, auth (n/z) identifies who calls the
corresponding API and what rights this person has, i.e. what
this person is allowed to do or what data a calling instance
is allowed to see.

OAuth2.0

OAuth2.01 represents the standard for authorization of a
third party to obtain access to resources, which belong
to someone else – RFC 6749. OAuth2.0 gives websites
or applications access to someone else’s data without
forwarding the actual password to them.

OAuth2.0 has four roles:
01 Resource owner:

Owner of the requested resource that allows
the client to use the resource.

02 Client:
The requesting instance that wants to use a resource.

03 Resource server:
The resource server hosts the protected resource
requested by the client and belonging to the resource
owner.

04 Authorization server:
Identifies and authenticates the user and
issues access tokens to the client.

A well-known OAuth2.0 example shows the connection
between Pinterest and Facebook. Within the online pin
board Pinterest, users can add their own Facebook friends
as contacts. For this purpose, Pinterest has to access the
user’s Facebook information, but without receiving the
user’s Facebook log-in data. That’s where OAuth2.0 comes in.

The user (resource owner) is shown a window by Pinterest
(client) for the login on Facebook. The user logs in and grants
Pinterest access. Pinterest can now request an access token
from Facebook’s Authorization Server and with the help of
this token, request the resources – in this case the user’s
contacts – from the Resource Server. Pinterest now receives
the resource as a protected resource. Pinterest only has the
rights that it has requested and that the resource owner
approves during the entire process and does not know
about the user’s login data on Facebook.

Grants include
+ Authorization code
+ Implicit
+ Resource owner password credentials
+ Client credentials

Authentication

“Hello, I am John Doe.
Here, look at my identity card.”

Authorization

“I have the permission to sit in this seat.
Here is my plane ticket.”

1 https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6749

7

JSON Web Token

A JSON Web Token (JWT, pronounced /dʒɒt/) is an
access token using JSON as a basis. It can be used
within the OAuth2.0 flows as the access token, which the
Authorization Server grants the client. The token is a string
that is passed in the header or as a request parameter.
Information is exchanged between two parties using the
verified claims contained in the JWT. As an open standard
(RFC 7519)2 JWT provides a secure and compact way to

exchange this information. Information in the JWT is
digitally signed and therefore trustworthy. JWT is a type of
container that defines the form of the information that is
sent back and forth.

A JSON Web token always consists of three parts, which
are marked in the following figure by the three colors red,
pink and blue.

Header (red)
The header indicates which algorithm
was used to sign the token. In this
example, it is HMAC SHA256, which
is represented by “alg”: “HS256”.
The token type, JSON Web Token,
is also specified. The data stored in
JSON format is Base64 encoded.

Payload (pink)
The payload represents the actual
information in JSON format. The key/
value pairs representing the infor-
mation are called claims. The payload
in the example contains the infor-
mation “sub”, “name” and “iat”. Exactly
like the header, the payload is also
Base64 encoded.

Signature (blue)
The signature is derived from the
header and is defined using the
algorithm standardized in RFC 7515.
After that, the signature is – exactly like
header and payload – Base64-encoded.

2 https://tools.ietf.org/html/rfc7519

https://tools.ietf.org/html/rfc7519

8
8
8

The Central Point for API Security Implementation: The API Gateway

An API gateway is the central point for implementation of security aspects and control. Within the gateway, security topics
such as Auth (n/z) can be addressed. An API Gateway protects from data security incidents.

The gateway serves as a sort of gatekeeper that guards the entrance to the data. It is located between the clients and the
actual service and represents the single point of entry.

Its job is to:
+ Provide transparency in API-related traffic
+ Enable IT to control and fulfill the API demands

set by the market and LOB

+ Protect exposed services
+ Secure data
+ Ensure reliable processing of every API call

To fulfill these tasks, various mechanisms are available, including policy enforcement to help with throttling
and authentication.

API Gateways provide transparency in API-related traffic and enable
the fulfillment of API demands set by the market and line of business.

9

The SEEBURGER BIS Platform’s API Gateway

Supported functionality
+ Supports parallel operations of several instances

(Active / Active) and ensures scaling, high availability,
and updates without downtime.

+ Provides a user exit, in the event that an individualization
deviating from the SEEBURGER standard, is required.

+ Comes with a comprehensive set of predefined policies
that can be easily expanded by using Policy Designer
capabilities in Developer Studio.

+ Functions of the BIS API Gateway are based on
the http adapter layer.

+ Uses in-memory channel processing.

+ Minimal latency.

SEEBURGER API Gateway is a preconfigured shipped part
of BIS API Management. All data traffic related to APIs goes
through the gateway, which is the central point of the
solution. Using the API Gateway increases transparency,
controls data flows, helps protect exposed services, secures
data and provides reliable processing of every API call.

Although multiple gateways can be used in parallel or
sequentially, they are not managed individually, but
centrally via a single GUI – the BIS API Manager. Install the
gateway(s) with the help of the BIS Landscape Manager,
and receive manual, partial or fully automated updates,
depending on your needs.

The following figure shows the data flows between calling
instances, and public and private APIs through two gate-
ways, which are centrally managed by the BIS API Manager.

Full lifecycle API management such as provided by the SEEBURGER BIS Platform’s API capability, helps to capture and
control the consumed and provided APIs. One of the essential components of API management is the API gateway, which
also plays an important role in the area of API security.

External systems/appsInternal systems

BIS Platform

API gateway

API
manager

API integration

Integration
manager

API Portal

10

Policy Architecture

BIS API Gateway checks policies based on the
http request information:
+ Caller IP

+ URL, which consists of Protocol, Host, Port, Path, Query Parameters

+ (http://petstore.swagger.io:80/v2/pet/5?name=dog)

+ Header = a set of key/value pairs

+ Content
+ REST: content = payload
+ WebService define SOAP content with additional SOAP Header, payload is inside

+ AS2 uses S/mime with additional headers, payload inside

Policies are rules that serve to
design and secure the underlying
services and therefore determine
the behavior of the API. Policies
can be assigned to different
groups, such as traffic manage-
ment or security. The structure of
a policy is always the same – at
least one rule to be checked and
the resulting action to be executed.
All of this happens inside the API
gateway, which is responsible for
policy enforcement.

Rate-limit-by-key
It is important to restrict the number of times an API can be called within a certain time range, for example,
to protect the backend systems which can only handle a certain number of requests in a certain time period,
or to protect against DoS attacks.

Parameter Description

Calls

The maximum number of calls that can be done before 429 “too many requests”
is returned. Checks the counter service to see whether the counter for the given
key has exceeded the maximum or not.

Renewal-period Renewal-period in which the counter service will decrement the counter.

Possible values:
• “S10” – 10 seconds
• “S30” – 30 seconds
• “M1” – 1 minute
• “M10” – 10 minutes
• “M30” – 30 minutes
• “H1” – 1 hour

Refresh-increment

In case the number of calls exceeds the accepted limits, all further calls
are blocked until the renewal period is over. After this, the counter value is
decremented by the value set in refresh-increment.

Counter-key The name of the key that we are using to limit the number of calls. Each time a
call is done, a counter for the given key will be incremented.

11

Validate-jwt
As mentioned above, JWTs are a common type of access token which contain user information and permissions.
It is important to validate any given JWT. If validation fails, a force reply will be given. Otherwise, the request is simply
forwarded to the next set of policies.

Parameter Description

Header-name The name of the header that contains the JWT token.
If the attribute “token-value” is already set, this will be ignored.

Failed-validation-
httpcode

The http code that the user will obtain as response when the validation fails.

Failed-validation-
error-message

The message that the user will obtain as response when the validation fails.

Token-value The JWT

Require-expiration-time “true” or “false”. Setting this to “false” means
that using an expired JWT token is allowed.

Require-signed-tokens “true” or “false”. Setting this to “false” means
that the JWT token will not be validated against the “signing-key”.

Issuer-signing-keys

Contains all the keys that will be used to validate the JWT token.
You can add multiple keys and they will be validated one by one until
the correct key is found or all the keys have been tested.

Audience Lists the expected audiences. The token will be validated to see
whether the expected audiences match the token’s target audiences.

Issuers Lists expected issuers. The token will be validated to see whether
the token’s issuer can be found in the list of expected issuers.

12

Threat Description

A01:2021 –
Broken Access Control

Complex access control policies with different hierarchies, groups, and roles, and
an unclear separation between administrative and regular functions, tend to lead to
authorization flaws. By exploiting these issues, attackers gain access to other users’
resources and/or administrative functions.

A02:2021 –
Cryptographic Failures

Previously known as Sensitive Data Exposure, which is more of a broad symptom
rather than a root cause, the focus now lies on failures related to cryptography (or
lack thereof) which often lead to exposure of sensitive data.

A03:2021 –
Injection

Injection flaws, such as SQL, NoSQL, Command Injection, etc., occur when untrusted
data is sent to an interpreter as part of a command or query. The attacker’s malicious
data can trick the interpreter into executing unintended commands or accessing data
without proper authorization.

A04:2021 –
Insecure Design

Insecure design is a broad category representing different weaknesses, expressed
as “missing or ineffective control design.” There is a difference between insecure
design and insecure implementation because they have different root causes and
remediation (i.e., failure to determine required security level).

A05:2021 –
Security
Misconfiguration

Security misconfiguration is commonly a result of unsecure default configurations,
incomplete or ad-hoc configurations, open cloud storage, misconfigured HTTP
headers, unnecessary HTTP methods, permissive Cross-Origin resource sharing
(CORS), and verbose error messages containing sensitive information.

A06:2021 –
Vulnerable and
Outdated Components

Unknown versions of all used components, unsupported or out of date software,
the failure to regularly scan for vulnerabilities and fix or upgrade underlying platforms,
frameworks and dependencies, the failure to test the compatibility of updated,
upgraded or patched libraries or to secure the components’ configurations –
all these are examples for vulnerable and outdated components.

A07:2021 –
Identification and
Authentication Failures

Authentication mechanisms are often implemented incorrectly, allowing attackers
to compromise authentication tokens or to exploit implementation flaws to assume
other user’s identities temporarily or permanently. Compromising system’s ability to
identify the client/ user, compromises API security overall.

Today’s API Security Risks

The information in this document about threats and protection mechanisms is
by no means exhaustive. The possibilities of attack are at least as varied as the
possible protective measures. When it comes to the security of web applications
and APIs, Open Web Application Security Project (OWASP) is an authority. OWASP
is a community that published its first security document in 2003. Since then,
there have been documents, tools, videos and the OWASP forum covering a
multitude of topics on security. In 2019 OWASP started focusing on specific
topics within API security, and have updated what are considered the top 10
security risks in 2021:

13

Threat Description

A08:2021 –
Software and
Data Integrity Failures

Software and data integrity failures relate to code and infrastructure that does
not protect against integrity violations if for example an application relies upon
plugins, libraries, or modules from untrusted sources, repositories, and content
delivery networks (CDNs). An insecure CI/CD pipeline can introduce the potential for
unauthorized access, malicious code, or system compromise.

A09:2021 –
Security Logging and
Monitoring Failures

Security logging and monitoring, coupled with missing or ineffective integration with
incident response, allows attackers to further attack systems, maintain persistence,
pivot to more systems to tamper with, extract, or destroy data. Most breach studies
demonstrate the time to detect a breach is over 200 days, typically detected by
external parties rather than internal processes or monitoring.

A10:2021 –
Server Side Request
Forgery (SSRF)

SSRF flaws occur whenever a web application is fetching a remote resource with-
out validating the user-supplied URL. It allows an attacker to coerce the application
to send a crafted request to an unexpected destination, even when protected by a
firewall, VPN, or another type of network access control list (ACL).
As modern web applications provide end-users with convenient features, fetching
a URL becomes a common scenario. As a result, the incidence of SSRF is increasing.
Also, the severity of SSRF is becoming higher due to cloud services and the
complexity of architectures.

Disclaimer
This publication contains general information only. SEEBURGER does not provide any professional service with this publication, in particular no legal or tax consulting service. This publication is not suitable
for making business decisions or taking actions. For these purposes, you should seek advice from a qualified advisor (e.g. lawyer and/or tax consultant) with regard to your individual case. No statements,
warranties or representations (express or implied) are made as to the accuracy or completeness of the information in this publication, and SEEBURGER shall not be liable or responsible for any loss or
damage of any kind incurred directly or indirectly in connection with any information contained in the presentation. ©

 S
EE

BU
RG

ER
 |

EN
 0

2/
20

24

www.seeburger.com

https://www.seeburger.com/

